f08 — Least-squares and Eigenvalue Problems (LAPACK) f08lec

NAG C Library Function Document
nag_dgbbrd (f08lec)

1 Purpose

nag_dgbbrd (f08lec) reduces a real m by n band matrix to upper bidiagonal form.

2 Specification

void nag_dgbbrd (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n,
Integer ncc, Integer kl, Integer ku, double ab[], Integer pdab, double d[],
double e[], double q[], Integer pdq, double pt[], Integer pdpt, double c[],
Integer pdc, NagError *fail)

3 Description

nag_dgbbrd (fO8lec) reduces a real m by n band matrix to upper bidiagonal form B by an orthogonal

transformation: A = QBP?. The orthogonal matrices Q and P, of order m and n respectively, are
determined as a product of Givens rotation matrices, and may be formed explicitly by the function if

required. A matrix C' may also be updated to give C' = Q”C.

The function uses a vectorisable form of the reduction.

4 References

None.

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: vect — Nag VectType Input
On entry: indicates whether the matrices Q and/or P’ are generated:
if vect = Nag_DoNotForm, then neither Q nor P’ is generated;
if vect = Nag_FormQ, then () is generated,;
if vect = Nag_FormP, then P’ is generated;
if vect = Nag_FormBoth, then both) and P are generated.
Constraint: vect = Nag_DoNotForm, Nag Form(Q, Nag FormP or Nag_FormBoth.

3: m — Integer Input
On entry: m, the number of rows of the matrix A.

Constraint: m > 0.

[NP3645/7] f08lec.1

f08lec NAG C Library Manual

4: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

5: nce — Integer Input
On entry: ng, the number of columns of the matrix C.

Constraint: nce > 0.

6: kl — Integer Input
On entry: k;, the number of sub-diagonals within the band of A.
Constraint: kl > 0.

7: ku — Integer Input
On entry: k,, the number of super-diagonals within the band of A.
Constraint: Ku > 0.

8: ab[dim] — double Input/Output

Note: the dimension, dim, of the array ab must be at least max(l,pdab x n) when
order = Nag_ColMajor and at least max(1, pdab x m) when order = Nag RowMajor.

On entry: the original m by n band matrix A. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. The storage of elements a;;, for
i=1,...,m and j=max(l,i—k),...,min(n,i+k,), depends on the order parameter as
follows:

if order = Nag_ColMajor, a;; is stored as ab[(j — 1) x pdab + ku + i — j;

ij
if order = Nag_RowMajor, q;; is stored as ab[(i — 1) x pdab + kIl + j —1].

On exit: A is overwritten by values generated during the reduction.

9: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab > kl + ku + 1.

10: d[dim] — double Output
Note: the dimension, dim, of the array d must be at least max(1, min(m,n)).

On exit: the diagonal elements of the bidiagonal matrix B.

11: e[dim] — double Output
Note: the dimension, dim, of the array e must be at least max(1, min(m,n) — 1).

On exit: the super-diagonal elements of the bidiagonal matrix B.

12: q[dim] — double Output

Note: the dimension, dim, of the array q must be at least max(1,pdq x m) when vect =
Nag FormQ or Nag FormBoth and at least 1 otherwise.

If order = Nag_ColMajor, the (i, j)th element of the matrix @ is stored in q[(j — 1) x pdq + i — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix @ is stored in

q((i —1) x pdq +j —1].
On exit: the m by m orthogonal matrix @, if vect = Nag FormQ or Nag FormBoth.

f08lec.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08lec

13:

14:

15:

16:

17:

18:

q is not referenced if vect = Nag DoNotForm or Nag FormP.

pdq — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraints:
if vect = Nag_FormQ or Nag FormBoth, pdq > max(1, m);
otherwise pdq > 1.
pt[dim] — double Output

Note: the dimension, dim, of the array pt must be at least max(1,pdpt x n) when vect =
Nag_FormP or Nag_FormBoth and at least 1 otherwise.

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in pt[(j — 1) x pdpt+ ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix is stored in pt[(i — 1) x pdpt + j — 1].

On exit: the n by n orthogonal matrix PT, if vect = Nag_FormP or Nag_FormBoth.
pt is not referenced if vect = Nag DoNotForm or Nag FormQ.

pdpt — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array pt.

Constraints:
if vect = Nag_FormP or Nag_FormBoth, pdpt > max(1,n);
otherwise pdpt > 1.
c[dim] — double Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pde x nec) when
order = Nag_ColMajor and at least max(1,pdc x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (4, j)th element of the matrix C' is stored in ¢[(j — 1) x pde + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix C' is stored in ¢[(i — 1) x pde + j — 1].

On entry: an m by ng matrix C.
On exit: C' is overwritten by Q”C.

¢ is not referenced if nce = 0.

pdc — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if order = Nag_ColMajor,
if nce > 0, pde > max(1, m);
if ncc =0, pde > 1;

if order = Nag_RowMajor, pdc > max(1, ncc).

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

[NP3645/7] f08lec.3

f08lec NAG C Library Manual

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, nce = (value).
Constraint: ncc > 0.

On entry, kl = (value).
Constraint: kl > 0.

On entry, ku = (value).
Constraint: ku > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdq = (value).
Constraint: pdq > 0.

On entry, pdpt = (value).
Constraint: pdpt > 0.

On entry, pde = (value).
Constraint: pde > 0.
NE_INT 2

On entry, pdq = (value), m = (value).
Constraint: if vect = Nag_FormQ or Nag_FormBoth, pdq > max(1, m);
otherwise pdq > 1.

On entry, pde = (value), nee = (value).
Constraint: pde > max(1, nce).
NE_INT_3

On entry, kl = (value), ku = (value), pdab = (value).
Constraint: pdab > kl + ku + 1.

On entry, m = (value), ncec = (value), pdc = (value).
Constraint: if nec > 0, pde > max(1, m);
if ncec =0, pdec > 1.

NE_ENUM_INT 2

On entry, vect = (value), m = (value), pdq = (value).
Constraint: if vect = Nag_FormQ or Nag_FormBoth, pdq > max(1, m);
otherwise pdq > 1.

On entry, vect = (value), n = (value), pdpt = (value).
Constraint: if vect = Nag FormP or Nag FormBoth, pdpt > max(1,n);
otherwise pdpt > 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

f08lec.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08lec

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies QBPT = A + E, where
IEll, < c(n)ellAll,,
¢(n) is a modestly increasing function of n, and € is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

The computed matrix @) differs from an exactly orthogonal matrix by a matrix F' such that
1E1]l, = O(e).

A similar statement holds for the computed matrix P

8 Further Comments
The total number of real floating-point operations is approximately the sum of:
6n’k, if vect = Nag_DoNotForm and nce = 0, and
3n*ne(k — 1)/k, if C is updated, and
3n*(k — 1)/k, if either Q or P is generated (double this if both),
where k = k; + k,, assuming n > k. For this section we assumed that m = n.

The complex analogue of this function is nag_zgbbrd (fO8lsc).

9 Example

To reduce the matrix A to upper bidiagonal form, where

—-0.57 —-128 0.00 0.00
—-1.93 1.08 —-0.31 0.00
230 024 040 -0.35
0.00 064 —-0.66 0.08
0.00 000 015 -2.13
—-0.00 0.00 0.00 0.50

A=

9.1 Program Text
/* nag_dgbbrd (f08lec) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{
/* Scalars *x/
Integer i, j, k1, ku, m, n, ncc, pdab, pdc, pdq, pdpt;
Integer d_len, e_len;
Integer exit_status=0;

[NP3645/7] f08lec.5

f08lec NAG C Library Manual

NagError fail;

Nag_OrderType order;

/* Arrays */

double *ab=0, *c=0, *d=0, *e=0, *pt=0, *qg=0;

#ifdef NAG_COLUMN_MAJOR

#define AB(I,J) ab[(J-1)*pdab + ku + I - J]
order = Nag_ColMajor;

#else

#define AB(I,J) ab[(I-1)*pdab + k1l + J - I]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08lec Example Program Results\n");

/* Skip heading in data file */

Vscanf ("$*[*\n] ");

Vscanf ("%$1d%1d%1d%1d%1d%*["\n] ", &m, &n, &kl, &ku, &ncc);
#ifdef NAG_COLUMN_MAJOR

pdab = k1 + ku + 1;

pdg = m;

pdpt = n;

pdc = m;
#else

pdab = k1 + ku + 1;

pdgq = m;

pdpt = n;

pdc = MAX(1l,ncc);
#endif

d_len = MIN(m,n);

e_len = MIN(m,n)-1;

/* Allocate memory */

if (!(ab = NAG_ALLOC((kl+ku+l) * m, double)) ||
= NAG_ALLOC(m * MAX(1l,ncc), double)) ||
el NAG_ALLOC(d_len, double)) ||
e = NAG_ALLOC(e_len, double)) ||
pt = NAG_ALLOC(n * n, double)) ||
g = NAG_ALLOC(m * m, double)))

Q
|

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file x/
for (i = 1; i <= m; ++1)
{

for (j = MAX(1,i-k1l); j <= MIN(n,i+ku); ++j)
Vscanf ("$1f", &AB(i,3));

Vscanf ("$*[*\n] ");

/* Reduce A to bidiagonal form =*/

fO08lec(order, Nag_DoNotForm, m, n, ncc, k1, ku, ab,
pdab, 4, e, q, pdq, pt, pdpt, ¢, pdc, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08lec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print bidiagonal form x/
Vprintf ("\nDiagonal\n") ;
for (i = 1; i <= MIN(m,n); ++i)
Vprintf ("$9.4f%s", d[i-1], i%8==0 2™\n":" ");
if (m >= n)
Vprintf ("\nSuper-diagonal\n") ;
else
Vprintf ("\nSub-diagonal\n") ;

f08lec.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

for (i = 1; i <= MIN(m,n)
Vprintf ("%9.4f%s", el[i-1],
Vprintf ("\n") ;

END:
if (ab) NAG_FREE (ab);
if (c) NAG_FREE(c);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (pt) NAG_FREE (pt);
if (q) NAG_FREE(q);

return exit_status;

9.2 Program Data

f08lec Example Program Data
6 4 2 1 O
-0.57 -1.28
-1.93 1.08 -0.31
2.30 0.24 0.40 -0.35
0.64 -0.066 0.08
0.15 -2.13
0.50

9.3 Program Results

f08lec Example Program Results

Diagonal

3.0561 1.5259 0.9690
Super-diagonal

0.6206 -1.2353 -1.1240

- 1; ++1i)

1%8==0 ?Il\nllzll ll) ;

:Values of M, N, KL, KU and NCC

:End of matrix A

1.5685

f08lec

[NP3645/7]

f08lec.7 (last)

	f08lec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	m
	n
	ncc
	kl
	ku
	ab
	pdab
	d
	e
	q
	pdq
	pt
	pdpt
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

